Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.460
Filtrar
1.
Blood Cancer J ; 14(1): 42, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453907

RESUMO

As key developmental regulators, HOX cluster genes have varied and context-specific roles in normal and malignant hematopoiesis. A complex interaction of transcription factors, epigenetic regulators, long non-coding RNAs and chromatin structural changes orchestrate HOX expression in leukemia cells. In this review we summarize molecular mechanisms underlying HOX regulation in clinical subsets of AML, with a focus on NPM1 mutated (NPM1mut) AML comprising a third of all AML patients. While the leukemia initiating function of the NPM1 mutation is clearly dependent on HOX activity, the favorable treatment responses in these patients with upregulation of HOX cluster genes is a poorly understood paradoxical observation. Recent data confirm FOXM1 as a suppressor of HOX activity and a well-known binding partner of NPM suggesting that FOXM1 inactivation may mediate the effect of cytoplasmic NPM on HOX upregulation. Conversely the residual nuclear fraction of mutant NPM has also been recently shown to have chromatin modifying effects permissive to HOX expression. Recent identification of the menin-MLL interaction as a critical vulnerability of HOX-dependent AML has fueled the development of menin inhibitors that are clinically active in NPM1 and MLL rearranged AML despite inconsistent suppression of the HOX locus. Insights into context-specific regulation of HOX in AML may provide a solid foundation for targeting this common vulnerability across several major AML subtypes.


Assuntos
Proteínas de Homeodomínio , Leucemia Mieloide Aguda , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/patologia , Proteínas Nucleares/genética , Nucleofosmina , Regulação Leucêmica da Expressão Gênica , Fatores de Transcrição/genética , Cromatina , Expressão Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-37470414

RESUMO

Genetic and/or epigenetic alterations in hematopoietic stem cells (HSCs) contribute to leukemia stem cell (LSC) formation. We aimed to identify alterations in the lncRNA expression profile signature of LSCs upon inhibition of PI3K/Akt/mTOR signaling, which provides selective advantages to LSCs. We also aimed to elucidate the potential interaction networks and functions of differentially expressed lncRNAs (DELs). We suppressed PI3K/Akt/mTOR signaling in LSC and HSC cell-lines by specific PI3K/mTOR dual-inhibitor (VS-5584) and confirmed the inhibition by antibody-array. We defined DELs by qRT-PCR. Increased SRA, ZEB2-AS1, antiPeg11, DLX6-AS, SNHG4, and decreased H19, PCGEM1, CAR-Intergenic-10, L1PA16, IGF2AS, and SNHG5 levels (|log2fold-change|>5) were strictly associated with PI3K/Akt/mTOR pathway inhibition in LSC. We performed in silico analyses for DELs. ZEB2-AS1 was found to be specifically expressed in normal bone marrow and predominantly lower in leukemic cell-lines. Three sub-clusters were identified for DELs and they were associated with "abnormality of multiple cell lineages in the bone marrow." DELs were most highly enriched for "glucuronidation" Reactome pathway and "ascorbate and aldarate metabolism" and "inositol phosphate metabolism" KEGG pathways. Transcription factors, MBD4, NANOG, PAX6, RELA, CEBPB, and CEBPA were predicted to be associated with the DEL profile. SRA was predicted to interact with CREB1, RARA, and PPARA. The possible DELs' targets were predicted to form six ontological groups, be highly enriched for phosphoprotein, and be involved in "PPAR signaling pathway" and "ChREBP regulation by carbohydrates and cAMP." These results will help to elucidate the roles of lncRNAs in the mechanisms that provide selective advantages to leukemia stem cells.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas , RNA Longo não Codificante , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células-Tronco Neoplásicas/metabolismo , Biologia Computacional
3.
Nat Commun ; 14(1): 7464, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38016946

RESUMO

Accumulating evidence indicates that HOXA9 dysregulation is necessary and sufficient for leukemic transformation and maintenance. However, it remains largely unknown how HOXA9, as a homeobox transcriptional factor, binds to noncoding regulatory sequences and controls the downstream genes. Here, we conduct dropout CRISPR screens against 229 HOXA9-bound peaks identified by ChIP-seq. Integrative data analysis identifies reproducible noncoding hits, including those located in the distal enhancer of FLT3 and intron of CDK6. The Cas9-editing and dCas9-KRAB silencing of the HOXA9-bound sites significantly reduce corresponding gene transcription and impair cell proliferation in vitro, and in vivo by transplantation into NSG female mice. In addition, RNA-seq, Q-PCR analysis, chromatin accessibility change, and chromatin conformation evaluation uncover the noncoding regulation mechanism of HOXA9 and its functional downstream genes. In summary, our work improves our understanding of how HOXA9-associated transcription programs reconstruct the regulatory network specifying MLL-r dependency.


Assuntos
Proteínas de Homeodomínio , Leucemia , Feminino , Camundongos , Animais , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Leucemia/genética , Proteínas de Neoplasias/metabolismo , Regulação para Cima , Cromatina , Regulação Leucêmica da Expressão Gênica
5.
Curr Gene Ther ; 23(5): 410-418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37491851

RESUMO

BACKGROUND: DNA hypermethylation plays a critical role in the occurrence and progression of acute myeloid leukemia (AML). The mitochondrial serine transporter, SFXN3, is vital for onecarbon metabolism and DNA methylation. However, the impact of SFXN3 on the occurrence and progression of AML has not been reported yet. OBJECTIVE: In this study, we hypothesized that SFXN3 indicates a poor prognosis and suggested tailored treatment for AML patients. METHODS: We used GEPIA and TCGA repository data to analyze the expression of SFXN3 and its correlation with survival in AML patients. RT-qPCR was used to detect the SFXN3 level in our enrolled AML patients and volunteers. Additionally, Whole Genome Bisulfite Sequencing (WGBS) was used to detect the genomic methylation level in individuals. RESULTS: Through the TCGA and GEPIA databases, we found that SFXN3 was enriched in AML patients, predicting shorter survival. Furthermore, we confirmed that SFXN3 was primarily overexpressed in AML patients, especially non-M3 patients, and that high SFXN3 in non-M3 AML patients was found to be associated with poor outcomes and frequent blast cells. Interestingly, non-M3 AML patients with high SFXN3 levels who received hypomethylating therapy showed a higher CR ratio. Finally, we found that SFXN3 could promote DNA methylation at transcription start sites (TSS) in non-M3 AML patients. These sites were found to be clustered in multiple vital cell functions and frequently accompanied by mutations in DNMT3A and NPM1. CONCLUSION: In conclusion, SXFN3 plays an important role in the progression and hypermethylation in non-M3 AML patients and could be a potential biomarker for indicating a high CR rate for hypomethylating therapy.


Assuntos
Metilação de DNA , Leucemia Mieloide Aguda , Humanos , Metilação de DNA/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Regulação Leucêmica da Expressão Gênica , Prognóstico
6.
Leukemia ; 37(8): 1732-1736, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365294

RESUMO

C-terminal mutation of Nucleophosmin 1 (NPM1C+) was thought to be a primary driving event in acute myeloid leukemia (AML) that reprograms leukemic-associated transcription programs to transform hematopoietic stem and progenitor cells (HSPCs). However, molecular mechanisms underlying NPM1C+-driven leukemogenesis remain elusive. Here, we report that NPM1C+ activates signature HOX genes and reprograms cell cycle regulators by altering CTCF-driven topologically associated domains (TADs). Hematopoietic-specific NPM1C+ knock-in alters TAD topology leading to disrupted regulation of the cell cycle as well as aberrant chromatin accessibility and homeotic gene expression, which results in myeloid differentiation block. Restoration of NPM1 within the nucleus re-establishes differentiation programs by reorganizing TADs critical for myeloid TFs and cell cycle regulators that switch the oncogenic MIZ1/MYC regulatory axis in favor of interacting with coactivator NPM1/p300, and prevents NPM1C+-driven leukemogenesis. In sum, our data reveal that NPM1C+ reshapes CTCF-defined TAD topology to reprogram signature leukemic transcription programs required for cell cycle progression and leukemic transformation.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
7.
Nat Commun ; 14(1): 1330, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899005

RESUMO

Microenvironmental bystander cells are essential for the progression of chronic lymphocytic leukemia (CLL). We have discovered previously that LYN kinase promotes the formation of a microenvironmental niche for CLL. Here we provide mechanistic evidence that LYN regulates the polarization of stromal fibroblasts to support leukemic progression. LYN is overexpressed in fibroblasts of lymph nodes of CLL patients. LYN-deficient stromal cells reduce CLL growth in vivo. LYN-deficient fibroblasts show markedly reduced leukemia feeding capacity in vitro. Multi-omics profiling reveals that LYN regulates the polarization of fibroblasts towards an inflammatory cancer-associated phenotype through modulation of cytokine secretion and extracellular matrix composition. Mechanistically, LYN deletion reduces inflammatory signaling including reduction of c-JUN expression, which in turn augments the expression of Thrombospondin-1, which binds to CD47 thereby impairing CLL viability. Together, our findings suggest that LYN is essential for rewiring fibroblasts towards a leukemia-supportive phenotype.


Assuntos
Leucemia Linfocítica Crônica de Células B , Proteínas Proto-Oncogênicas c-jun , Trombospondinas , Quinases da Família src , Humanos , Fibroblastos/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia/genética , Leucemia Linfocítica Crônica de Células B/genética , Transdução de Sinais , Quinases da Família src/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Trombospondinas/metabolismo
8.
Theranostics ; 13(1): 77-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593968

RESUMO

Rationale: microRNAs (miRNAs) are frequently deregulated and play important roles in the pathogenesis and progression of acute myeloid leukemia (AML). miR-182 functions as an onco-miRNA or tumor suppressor miRNA in the context of different cancers. However, whether miR-182 affects the self-renewal of leukemia stem cells (LSCs) and normal hematopoietic stem progenitor cells (HSPCs) is unknown. Methods: Bisulfite sequencing was used to analyze the methylation status at pri-miR-182 promoter. Lineage-negative HSPCs were isolated from miR-182 knockout (182KO) and wild-type (182WT) mice to construct MLL-AF9-transformed AML model. The effects of miR-182 depletion on the overall survival and function of LSC were analyzed in this mouse model in vivo. Results: miR-182-5p (miR-182) expression was lower in AML blasts than normal controls (NCs) with hypermethylation observed at putative pri-miR-182 promoter in AML blasts but unmethylation in NCs. Overexpression of miR-182 inhibited proliferation, reduced colony formation, and induced apoptosis in leukemic cells. In addition, depletion of miR-182 accelerated the development and shortened the overall survival (OS) in MLL-AF9-transformed murine AML through increasing LSC frequency and self-renewal ability. Consistently, overexpression of miR-182 attenuated AML development and extended the OS in the murine AML model. Most importantly, miR-182 was likely dispensable for normal hematopoiesis. Mechanistically, we identified BCL2 and HOXA9 as two key targets of miR-182 in this context. Most importantly, AML patients with miR-182 unmethylation had high expression of miR-182 followed by low protein expression of BCL2 and resistance to BCL2 inhibitor venetoclax (Ven) in vitro. Conclusions: Our results suggest that miR-182 is a potential therapeutic target for AML patients through attenuating the self-renewal of LSC but not HSPC. miR-182 promoter methylation could determine the sensitivity of Ven treatment and provide a potential biomarker for it.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , MicroRNAs , Animais , Camundongos , Linhagem Celular Tumoral , DNA , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Biomark Med ; 17(21): 889-898, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38230972

RESUMO

Background: This study aimed to evaluate the prognostic value of the MTSS1 gene expression in patients with acute leukemia. Patients & methods: MTSS1 gene expression was quantified in 120 newly diagnosed acute leukemia patients, by quantitative reverse transcription PCR at diagnosis and after induction chemotherapy therapy. Results: Baseline MTSS1 gene expression was significantly higher in acute leukemia patients compared to the control group (p < 0.001). Acute leukemia patients with low baseline MTSS1 gene expression at diagnosis have significantly shorter overall survival and disease-free survival compared with those with higher expression (p < 0.001 for both). Conclusion: Downregulation of MTSS1 gene expression at diagnosis was associated with poor outcome in either cytogenetic acute myeloid leukemia or B-cell acute lymphoblastic leukemia.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Doença Aguda , Expressão Gênica , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/uso terapêutico , Proteínas de Neoplasias/genética
10.
Nature ; 611(7935): 387-398, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289338

RESUMO

Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.


Assuntos
Genoma Humano , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Metilação de DNA , Leucemia Mieloide Aguda/genética , Genoma Humano/genética , Regiões Promotoras Genéticas , Elementos Facilitadores Genéticos , Inativação Gênica , Reprodutibilidade dos Testes , Sistemas CRISPR-Cas , Análise de Sequência , DNA (Citosina-5-)-Metiltransferases , Regulação Leucêmica da Expressão Gênica
11.
Cancer Sci ; 113(12): 4092-4103, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36047964

RESUMO

Adult T-cell leukemia/lymphoma (ATL) is an intractable hematological malignancy with extremely poor prognosis. Recent studies have revealed that super-enhancers (SE) play important roles in controlling tumor-specific gene expression and are potential therapeutic targets for neoplastic diseases including ATL. Cyclin-dependent protein kinase (CDK) 9 is a component of a complex comprising transcription factors (TFs) that bind the SE region. Alvocidib is a CDK9 inhibitor that exerts antitumor activity by inhibiting RNA polymerase (Pol) II phosphorylation and suppressing SE-mediated, tumor-specific gene expression. The present study demonstrated that alvocidib inhibited the proliferation of ATL cell lines and tumor cells from patients with ATL. RNA sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) disclosed that SE regulated IRF4 in the ATL cell lines. Previous studies showed that IRF4 suppression inhibited ATL cell proliferation. Hence, IRF4 is a putative alvocidib target in ATL therapy. The present study revealed that SE-mediated IRF4 downregulation is a possible mechanism by which alvocidib inhibits ATL proliferation. Alvocidib also suppressed ATL in a mouse xenograft model. Hence, the present work demonstrated that alvocidib has therapeutic efficacy against ATL and partially elucidated its mode of action. It also showed that alvocidib is promising for the clinical treatment of ATL and perhaps other malignancies and neoplasms as well.


Assuntos
Antineoplásicos , Leucemia-Linfoma de Células T do Adulto , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Quinases Ciclina-Dependentes/antagonistas & inibidores , Genes Neoplásicos , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/genética , Leucemia-Linfoma de Células T do Adulto/patologia , Antineoplásicos/farmacologia , Elementos Facilitadores Genéticos , Regulação Leucêmica da Expressão Gênica
13.
Oxid Med Cell Longev ; 2022: 9306614, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35915613

RESUMO

As a previously discovered target of DNA damage, Na+/H+ exchanger 1 (NHE1) plays a role in regulation of intracellular pH (pHi) through the extrusion of intracellular proton (H+) in exchange for extracellular sodium (Na+). Its abnormal expression and dysfunction have been reported in solid tumor and hematopoietic malignancies. Here, we reported that suppression of NHE1 in BCR-ABL+ hematopoietic malignancies' K562 cells treated with Etoposide was manipulated by miR-19 and c-MYC. Inhibition of miR-19 or c-MYC enhanced the expression of NHE1 and sensitized K562 cells to Etoposide in vitro. The in vivo nude mouse transplantation model was also performed to confirm the enhanced sensitivity of K562 cells to Etoposide by inhibiting the miR-19 or c-MYC pathway. TCGA analysis conferred a negative correlation between miR-19 level and leukemia patients' survival. Thus, our results provided a potential management by which the c-MYC-miRNA 19 pathway might have a crucial impact on sensitizing K562 cells to Etoposide in the therapeutic approaches.


Assuntos
Neoplasias Hematológicas , Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Regulação Leucêmica da Expressão Gênica , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima
14.
Blood Adv ; 6(22): 5938-5949, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36037515

RESUMO

NPM1 is the most frequently mutated gene in adults with acute myeloid leukemia (AML). The interaction between mutant NPM1 (NPM1c) and exportin-1 (XPO1) causes aberrant cytoplasmic dislocation of NPM1c and promotes the high expression of homeobox (HOX) genes, which is critical for maintaining the leukemic state of NPM1-mutated cells. Although there is a rationale for using XPO1 inhibitors in NPM1-mutated AML, selinexor administered once or twice per week did not translate into clinical benefit in patients with NPM1 mutations. Here, we show that this dosing strategy results in only a temporary disruption of the XPO1-NPM1c interaction, limiting the efficacy of selinexor. Because the second-generation XPO1 inhibitor eltanexor can be administered more frequently, we tested the antileukemic activity of prolonged XPO1 inhibition in NPM1-mutated AML models. Eltanexor caused irreversible HOX downregulation, induced terminal AML differentiation, and prolonged the survival of leukemic mice. This study provides essential information for the appropriate design of clinical trials with XPO1 inhibitors in NPM1-mutated AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Camundongos , Animais , Regulação Leucêmica da Expressão Gênica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
15.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743167

RESUMO

The transcription factor PU.1 (Purine-rich DNA binding, SPI1) is a key regulator of hematopoiesis, whose level is influenced by transcription through its enhancers and its post-transcriptional degradation via microRNA-155 (miR-155). The degree of transcriptional regulation of the PU.1 gene is influenced by repression via DNA methylation, as well as other epigenetic factors, such as those related to progenitor maturation status, which is modulated by the transcription factor Myeloblastosis oncogene (MYB). In this work, we show that combinatorial treatment of acute myeloid leukemia (AML) cells with DNA methylation inhibitors (5-Azacytidine), MYB inhibitors (Celastrol), and anti-miR-155 (AM155) ideally leads to overproduction of PU.1. We also show that PU.1 reactivation can be compensated by miR-155 and that only a combined approach leads to sustained PU.1 derepression, even at the protein level. The triple effect on increasing PU.1 levels in myeloblasts stimulates the myeloid transcriptional program while inhibiting cell survival and proliferation, leading to partial leukemic differentiation.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Diferenciação Celular/genética , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
17.
Haematologica ; 107(11): 2601-2616, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35546301

RESUMO

The homeobox transcription factors HoxA9 and Meis1 are causally involved in the etiology of acute myeloid leukemia. While HoxA9 alone immortalizes cells, cooperation with Meis1 is necessary to induce a full leukemic phenotype. Here, we applied degron techniques to elucidate the leukemogenic contribution of Meis1. Chromatin immunoprecipitation experiments revealed that Meis1 localized mainly to H3K27 acetylated and H3K4 mono-methylated enhancers preactivated by HoxA9. Chromatin association of Meis1 required physical presence of HoxA9 and all Meis1 DNA interactions were rapidly lost after HoxA9 degradation. Meis1 controlled a gene expression pattern dominated by Myc, ribosome biogenesis and ribosomal RNA synthesis genes. While Myc accounted for the cell cycle stimulating effect of Meis1, overexpression of this oncogene alone did not accelerate leukemogenesis. Besides its effect on Myc, Meis1 induced transcription of ribosomal biogenesis genes. This was accompanied by an elevated resistance against inhibition of ribosomal RNA synthesis and translation, but without affecting steady-state protein synthesis. Finally, we demonstrate that HoxA9 and Meis1 proteins are stabilized by post-translational modification. Mutation of HoxA9/Meis1 phosphorylation sites or inhibition of casein kinase 2 lead to rapid protein degradation suggesting a potential pathway for pharmacological intervention.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Neoplasias , Carcinogênese/genética , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/genética , Leucemia Mieloide Aguda/genética , Proteína Meis1 , Proteínas de Neoplasias/genética , RNA Ribossômico , Animais , Camundongos
18.
Int J Clin Oncol ; 27(7): 1222-1232, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35536524

RESUMO

BACKGROUND: The clinical significance of miR-17 in patients with acute myeloid leukemia (AML) remains unknown. METHODS: Real-time quantitative reverse transcription-polymerase chain reaction (qPCR) was performed to detect the miR-17 expression in 115 de novo AML patients, 31 patients at complete remission (CR) time, 8 patients at relapse time and 30 normal controls. RESULTS: MiR-17 was upregulated in de novo AML compared with normal controls. Patients with high expression of miR-17 had less CEBPA double mutation, less favorable ELN-risk and lower CR rate. The level of miR-17 was significantly decreased at CR phase and was returned to primary level even higher when in relapse phase. In addition, Cox regression analysis revealed that miR-17 expression retained independent prognostic significance for overall survival (OS). Moreover, the gene-expression profile analysis of miR-17 in AML obtained from TCGA database was involved in multiple biological functions and signal pathways. Among the differential expressed genes (DEGs), we identified FGL2, PLAUR, SLC2A3, GPR65, CTSS, TLR7, S1PR3, OGFRL1, LILRB1, IL17RA, SIGLEC10, SLAMF7, PLXDC2, HPSE, TCF7 and MYCL as potential direct targets of miR-17 according to in silico analysis. CONCLUSIONS: High expression of miR-17 in de novo AML patients pointed to dismal clinical outcome and disease recurrence, which could serve as novel prognostic biomarker for AML patients.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Fibrinogênio/metabolismo , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Prognóstico , Recidiva
19.
Adv Exp Med Biol ; 1387: 127-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35304708

RESUMO

Acute leukemia (AL) is a poor progressive resistant hematological disease, which has different subtypes and immunophenotypic properties according to leukemic blasts. AL is caused by genetic changes and associated with leukemia stem cells (LSCs), which determine its prognosis and endurance. LSCs are thought to be hematopoietic progenitor and stem cell (HPSCs)-like cells that underwent a malignant transformation. In addition to their low number, LSCs have the characteristics of self-renewal, resistance to chemotherapy, and relapse of leukemia. The myeloid ecotropic integration site-1 (MEIS1) protein is a member of the three-amino acid loop extension (TALE) family of homeodomain (HD) proteins that can bind to DNA sequence-specific manner. Studies have shown that overexpression of MEIS1 and associated cofactors involves tumorigenesis of numerous cancers. Historically, increased expression of Meis1 transcript as well as protein has been determined in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) patients. Moreover, resistance to conventional chemotherapy was observed in leukemic blast samples with high Meis1 content. In this review article, the molecular mechanism of the oncological role of the MEIS1 protein in leukemia and LSC is discussed. In addition, it was suggested that MEIS1 protein could be utilized as a possible treatment target in leukemia with an emphasis on the inhibition of MEIS1, which is overexpressed in LSC.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , Proteínas de Neoplasias/metabolismo
20.
Life Sci ; 296: 120437, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35231484

RESUMO

Chronic myeloid leukemia (CML) is a cancer of the bone marrow characterized by an uncontrolled increase in the production of myeloid cells. MicroRNAs (miRNAs) are a group of non-coding RNA molecules with a length of 19 to 25 nucleotides that participate in the regulation of gene expression after transcription. They also play an important role in many physiological processes, such as proliferation, differentiation, apoptosis, and hematopoiesis. The alterations in miRNA expression are associated with malignancies, including CML, which act as either oncogenes or tumor suppressors. MiRNA is secreted by cells and is found in body fluids such as blood, serum, and plasma. Alterations in miRNA levels can distinguish CML patients from healthy individuals. In this review, we summarize the roles of several miRNAs and their target genes in the development, progression, and drug resistance of CML as well as the effects of treatment on the expression of these miRNAs. Further, we discuss the potential role of miRNAs in the diagnosis, prognosis, and treatment response of CML.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/genética , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Prognóstico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...